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A theory describing boundary-layer surface-pressure fluctuations on a rigid 
surface is presented in a form that illustrates the main effect of compressibility. 
The most significant effect is that the correlation area is proportional to the 
square of mean-flow Mach number so i t  does not vanish in flow of finite compressi- 
bility. Modifications of the wave-number and frequency spectra by this effect 
are described, and the results applied to the computation of large plate response. 
That computation incorporates the effect of fluid loading, which enters the 
response equations as a dissipative term for components at supersonic phase 
velocity but merely as an added loading for subsonic components. 

1. Introduction 
This paper is concerned with a study of two effects which are frequently re- 

garded as negligible in discussions of boundary-layer noise. The first is the manner 
in which the spectral-energy distribution is subject to modification by finite- 
Mach-number effects. The second is concerned with details of structural response 
to boundary-layer turbulence, and its susceptibility to changes in mean-flow 
Mach number. It is known that the intensity of the turbulence-induced surface 
pressure is a slowly varying function of Mach number. This point, evident from 
experimental studies (Willmarth & Wooldridge 1962, Hodgson 1962, Kistler 
& Chen 1962), is explained by Lilley (1963) to be due, very largely, to the fact 
that, even in high Mach-number flows, the region of turbulence giving rise to the 
dominant part of the surface pressure, being relatively close to the surface, is at a 
considerably lower velocity. He showed how arguments based on incompressible 
flow equations need be modified only slightly at  higher Mach numbers. In  general, 
that conclusion is undoubtedly true, but it would be quite misleading to regard 
it as the case for all spectral components of the flow. 

Even in boundary layers formed at very low speeds some spectral components 
are associated with supersonic phase velocities and must be subject to modifica- 
tion by compressibility effects. The correlation area is a parameter critically 
dependent on these effects. Incompressible flow arguments (Kraichnan 1956, 
Phillips 1956, Hodgson 1962, Ffowcs Williams & Lyon 1963) have shown the 
area to be zero, with the instantaneous net force applied by pressure fluctuations 
on the boundary also being zero. This is true irrespective of the temporal varia- 
tion in surface pressure. Obviously this result is irrelevant whenever incom- 
pressible flow equations prove inadequate. That is generally the case, for the 
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result may be re-expressed as a statement that the power spectral density a t  
zero wave-number is zero irrespective of the frequency. Any finite frequency 
associated with zero wave-number implies, not only a supersonic phase velocity, 
but an infinite one, so that the incompressible solution should be strongly quali- 
fied. I n  fact there is a net force and consequently a finite correlation area, but 
proportional to the square of mean-flow Mach number. It will be argued that, 
even in low Mach number flows, this compressible-flow effect will dominate the 
low wave-number region of the wall-pressure spectrum, and will modify previous 
conclusions that the spectrum will increase from zero quadratically with increas- 
ing wave-number. A wave-number limit, below which proper deductions must 
be based on compressible-flow equations will appear, and that limit is suggested 
to be of the order M I S * ,  M being the mean flow Mach number and 6% the displace- 
ment thickness. 

This modification of the wall-pressure spectrum will have a direct bearing 
on surface response in particular spectral ranges. Those ranges are the ones 
directly responsible for the transmission of sound by structures, especially 
when the panel size is large. Response calculations will be described to show how 
surface vibration is also modified by compressibility effects, in precisely the same 
ranges as is the forcing spectrum. At supersonic phase velocities, compressibility 
effects are important and sound waves become possible. The sound field can then 
act as an energy drain to the structure and appears in the response equations as 
an added damping term. However, a t  subsonic phase speeds, compressibility 
effects are negligible and the flow may be regarded as incompressible. An added 
loading is still evident, but represents no energy drain and affects the response 
level only inasmuch as it changes the resonance frequency. Mechanical damping 
thus provides the only control of the resonant response. 

2. The surface-pressure spectrum at finite Mach number 
The object of this study is to bring out the influence of fluid compressibility 

on the spectrum of surface-pressure fluctuations induced by turbulent flow. 
Viscous effects are of no particular concern, so we neglect them, but assume, of 
course, that they play their full role in bringing about and maintaining a turbulent 
state. Then, the exact equations of motion can be written in a form where the 
surface pressure on a rigid boundary is given by a volume integral of a turbulent- 
source term, 

Ti is Lighthill's (1952) turbulence stress tensor, z is a position vector and t 
is time. zi is a tensor where repeated suffices are to be summed over 1, 2 and 3. 
The direction parallel with the 2 axis will be that normal to the indefinitely large 
flat surface lying in the 1, 3 plane. The surface pressure is designated p ( y ,  t ) ,  y 
being a position vector in the surface 

(2.0) 
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where a,o is the speed of sound in the stagnation flow and r is the distance sepa- 
rating a particular source point z from the position where the pressure is being 
measured y ,  r = 1 z - y 1 .  

The three-dimensional power spectrum of wall pressure can be formed very 
easily once the generalized Fourier transform of the pressure is known. This 
transform we shall denote #(k,  w ) ,  k being a wave-number vector in the plane 
associated with the surface, and w an angular frequency, i.e. 

#(k, w )  = l / p ( y ,  t )  e--ik.ye-iwtdydt. 

The wall pressure is given by the inverse of this equation 

(2.1) 

(2..2) 

In  a similar way we define qj(z,  w )  to be the generalized Fourier time transform 
of the turbulence stress tensor, so that 

The equation for the Fourier transform of surface pressure can then be written 

(2.4) 

The integration over time and frequency w* is straightforward and leads to a 
result equating the frequencies in the pressure and source terms 

The surface integral over y is also relatively straightforward provided the 
surface is sufficiently large that the result is independent of the surface shape, and 
this we shall assume to be the case. 

where k is written for Ik/. Equation (2.6) can then be rewritten as 

The stress tensor together with its first derivative can be assumed zero on the 
surface bounding the volume V .  They are zero on the rigid boundary, and the 
other boundaries can be considered sufficiently distant from the source as not to 
affect the result. This step is justified by the fact that the influence of localized 
turbulence takes a finite time to travel to remote positions. Any distant control 
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surface could then be assumed beyond the region currently subjected to that 
influence. A complication enters when the limit of incompressible flow is 
approached by allowing the propagation speed to become infinite. However, it  
can easily be shown that the surface source terms are then of the order (r-*)  
at large r,  so that their integral remains zero. Then 

This equation can be written in terms of the three-dimensional generalized 
Fourier transform of a source function Oii(z2, k ,  w ) ,  say, by carrying out the inte- 
gration over a surface parallel to the plane boundary 

The power spectrum of the wall pressure is formed by multiplying this equa- 
tion by its complex conjugate, but we shall not do that, since the expression 
becomes somewhat more bulky without making its form any simpler. We can 
examine the properties of the spectrum a t  low frequencies and low wave-numbers, 
which is our particular concern here, on the basis of the above expression, 
remembering of course that the spectrum depends on #(k, o) quadratically. 

It is clear from equation (2.10) that, for any wave-number k, there exists a 
critical frequency above which the wall pressure is part of an oscillatory field, 
or sound wave. Below that frequency, the pressure decays exponentially from 
source and the compressibility of the fluid is then of no great consequence in 
setting its strength. Conditions a t  infinity must be used to ensure outgoing waves 
in the high-frequency solution and to ensure a finite contribution in the second 
solution. We write the limiting form of these two cases separately. First, 

i exp { - ix2(w/a )} 
X -  O ax,. (2.11) 

@la0 

This solution is entirely relevant a t  k = 0, having the form 

(2.12) 

an expression that shows how the surface integral of wall pressure is entirely 
determined by the sound radiated by the turbulent flow in a direction perpen- 
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dicular to the surface; an exact restatement of the Fourier transform of equation 
(2.12) being 

(2.13) 

The first major influence of compressibility thus emerges to qualify the 
frequently quoted result that the wave-number spectral density approaches 
zero at  low wave-numbers, or that the instantaneous surface force vanishes. It 
does in incompressible flow, but finite compressibility ensures a finite value. 

This finding has an interesting corollary in two related studies. The first 
is that the final expression in equation (2.13) relates two terms that appear in a 
particular application of Curle's (1955) extension to Lighthill's theory of aero- 
dynamic sound. These terms have in the past been regarded to be of differing 
orders of magnitude, an impression that is corrected only when the small, but 
finite, fluid compressibility is taken into account. However, this aspect has 
already been clarified by Powell (1960). The second relates to experimental 
studies of surface-pressure-correlation areas in boundary-layer flows. The theory 
shows that, in this instance, the correlation area is determined by what is 
effectively the turbulence sound field. It must, therefore, be subjected to change 
by any alteration in the acoustic environment. Consequently, that environment 
should be subject to the same careful control as in the aerodynamic flow, in 
experimental studies of correlation areas. 

From equation (2.11) it is clear that the power spectral density in the r6gime, 
1w1 9 a,lkl, approaches zero with frequency squared at low frequencies. 
Oij(z2, k, w ) ,  being the transform of a source term depending quadratically on 
velocity fluctuations, will incorporate 'difference tones ' which are bound to 
generate a flat spectrum at low frequencies. The form of the pressure spectrum 
then follows immediately from the wave number, or frequency, weighting func- 
tions, w/ao in this case leading to d / a ;  in the quadratic spectrum function. 

In the low-frequency rhgime, where IwI < a,lkl, the usual incompressible- 
flow arguments apply and equation (2.10) reduces to the equation familiar to 
that problem: 

A t  zero frequency this equation is invariably valid SO that it defines precisely 
the power spectrum along the wave-number axis : 

(2.15) 
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There are two points to notice about this result. First, contributions to the 
surface pressure come from all regions of the boundary layer, the bigger the scale 
of pressure (i.e. the lower the wave-number), the smaller will be the effect of the 
weighting term tending to localize the source region, i.e. exp(-kx,)-+l as 
k + 0. Secondly, the pressure transform $(k, w )  is proportional to k times some 
integral function of the source transform Ofj(z2, k, w ) .  $(k, w )  must then increase 
from zero in direct proportion to k a t  low enough wave-number, its value a t  k = 0, 
determining the wave-number spectral density there, being zero. 

4ao 

L L i n e  defining convection 
Mach number 

FIGURE 1.  Contours of constant spectral level in a typical source spectrum 
of the boundary-layer flow. 

Another important point to note from equation (2.14) is that the equation has 
very little to say about the form of the frequency spectrum of wall pressure. 
It says no more in fact than that the contribution from a particular source region 
will have precisely the same frequency spectrum as does the source in that 
region. However, that information is very significant because the sources in 
turbulent flow are convected by the mean motion so the frequency spectrum is, in 
the main, merely a reproduction of the downstream wave-number spectrum; i.e. 
Bij(z2, k, w - k,UJ tends to vary slowly with changes in k, U, being the local con- 
vection velocity. It follows that the wall-pressure spectrum will also display this 
convective property, but for a large variety of convection speeds. 

We are now in a position to discuss general properties of the pressure spectrum 
at both low frequencies and wave-numbers, and to examine the way compressi- 
bility alters the previous incompressible-flow arguments. Our discussion must 
be based on typical features to be expected in the source spectrum to which 
Oii(zz, k, w )  is related. We shall assume that spectrum to be typically of the form 
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sketched out in figure 1, a form characteristic of convective fields. Our fore- 
going discussion shows how the wall-pressure spectrum is composed of a super- 
position of spectra of these types weighted according to their position. Our 
major interest is in the way they are weighted with respect to frequency and 
wave-number, and that follows from equations (2.12) and (2.15) dealing with the 
compressible and incompressible regimes respectively. 

I ,  

when 

I 
Convection velocity line 

FIGURE 2. Basic form of the surface-pressure spectrum. (a)  Compressible 
rhgime, oa/ai weighting ; ( b )  incompressible r6gime, kZ weighting. 

Figure 2 illustrates the wall-pressure spectrum to be expected in the two ex- 
treme ranges. The first is that where compressibility is always important so that 
IwI > uolkl. The spectrum is characterized by its approach to zero at zero 
frequency. The second limiting case is the more familiar one relevant to entirely 
incompressible flows so that IwI < a,lkl. This spectrum is characterized by its 
approach to zero at zero wave-number. Both spectra display the convective 
features characteristic of the source spectrum in figure 1. 

Previous discussions of the wall-pressure spectra have been concerned with 
entirely incompressible Aow, so that figure 2 (b )  ilIustrates the basis for their 
conclusion that the wave-number spectrum approaches zero as k2 at low 
wave-number. An application of Taylor’s hypothesis of rigid convection 
relates this to the frequency spectrum, which would display a level approaching 

33 Fluid Mech. 22 
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zero with frequency squared at low frequency. However, it is evident that both 
the assumption of incompressible flow and of rigid convection break down a t  
low values of wave-number. The modification of the model is, however, relatively 
simple. The compressible-flow spectrum will display features of figure 2 (a)  in the 
high-frequencyrkgime where Iw1 % a,/ kl, but that  of figure 2 (b)  at low frequencies. 
That spectrum is then generated by a suitable superposition of figure 2(a) and 
( h )  and is sketched out in figure 3. The main point to note here is that the spectral 

Supersonic phase velocity- W.'% 

Spectral density proportional to ( ~ J . ~ U ~ ) Z  1 
FIGURE 3. A typical surface-pressure p0we.r spectrum in flow of finite compressibility. 
The example chosen is for a predominantly subsonic flow where most of the energy is 
naturally concentrated close to the origin of the k, wave-number component, i.e. k NN Is,. 

density is now zero only when both frequency and wave-number are zero. A t  
higher frequencies or wave-numbers, however, the dominant feature remains 
that of convection and the two spectra are again likely to be related through 
Taylor's hypothesis of rigid convection. 

I n  practice, two-dimensional spectra are rarely measured so that the conse- 
quences of compressibility effects on the simpler spectral functions are of more 
direct interest. We deal first with the wave-number spectrum P(k) ,  say, which is 
obtained by integrating the two-dimensional spectrum over all frequencies. Its 
asymptotic form at low wave-number is easily deduced from an integration of 
equation (2.12): 
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e,, is a three-dimensional Fourier transform of the source function qj which 
increases in direct proportion to a typical dynamic head pUZ.  Frequencies tend 
to have the Strouhal proportionality w - (U/S*), where 6* is the boundary-layer- 
displacement thickness, regarded here as the typical scale of the turbulent field. 
These values impose a definite proportionality on the function 8, : 

oii N pus*3. (2.17) 

k 
Asymptotic low-wave-number level M2p 2flJ*2 

A 

h 

3 c. 
2 

4 2  
.A 

8 a 
?3 
e - 
4 

a, Taylor hypothesis is - approximation in this 2 - a 
5 
$ 

D 
I w 

FIGURE 4. General features of' wave-number and frequency spectra of the surface- 
pressure field induced by a turbulent boundary layer at finite Mach numbers. 

The dimensional form of equation (2.16) is then p (  U3/a0) S*2, leading to an 
asymptotic low-wave-number limit, P(k -+ 0 ) ,  proportional to the square of the 
mean-flow Mach number M = (U/a,) 

(2.18) 

A t  higher wave numbers the effects of compressibility are less important, and 
the spectrum will display features directly attributable to incompressible- 
flow phenomena. The power may rise with wave-number squared above the 
compressible-flow-dominated wave-number range. A typical spectrum is sketched 

33-5 
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out in figure 4(a) and represents the integral over all frequencies of the more 
general spectrum illustrated in figure 3. The example shown is for subsonic flow. 
At higher Mach numbers the plateau at  low wave-numbers may obscure any 
portion increasing with increasing values of k. For a considerable part of the low- 
wave-number range, incompressible-flow arguments would then be inadequate. 
The dimensional analysis applied to the spectrum based on equation (2.14) 
shows how the level increases in proportion to k2p2U4S04, so that the incom- 
pressible-flow level equals the asymptotic level, where compressible effects are 
dominant, at  a wave-number k,, where 

k,S* N M .  (2.19) 

This limiting value is also sketched out in figure 4, but is valid only as long as the 
asymptotic low-wave-number level is lower than the peak level, a condition 
limited by the mean-stream Mach number. 

In  a similar way the frequency spectrum may be computed by integrating the 
spectrum of figure 3 over all wave-numbers. In  this case there appears to be no 
good reason why the spectrum should be zero at a very low frequency, since a, 
finite power seems to exist there, at least over some wave numbers. In low- 
Mach-number flows, the compressibility seems to play no significant role in 
setting the low-frequency spectral level, a point evident from figure 3, where the 
energy is mainly concentrated in the region described well by incompressible- 
flow arguments. 

The suggestion put over by Hodgson (1962), that the spectrum tends to 
vanish at low frequency, based as it is on incompressible-flow arguments and an 
application of Taylor's hypothesis, can only be valid away from the region 
of very low frequency. However, Hodgson's measurements show that region to 
be extensive, and that the bulk of the spectrum demonstrates the convection of 
the incompressible motion where the wave-number spectrum approaches zero 
like k2 at low wave-number. A sketch of such a spectrum is given in figure 4 ( b ) ,  
although the current study throws no new light on its form apart from the 
prediction of a non-zero asymptote at low enough frequency. 

Before going on to describe some of the effects of these conclusions on the 
response of an elastic boundary to turbulent flow, it is worth summarizing the 
basic results. In incompressible flow the wave-number spectrum approaches 
zero like k2. The frequency spectrum being, in the main, a demonstration of con- 
vective effects, reproduces this form and tends to fall away from its peak value 
like u2 at the lower frequencies. However, departures from rigid convection 
destroy the complete equivalence of the two spectra, a feature that introduces 
a finite level at zero frequency. At finite Mach numbers, the frequency spectrum 
is likely to retain most of its incompressible flow characteristics, but the wave- 
number spectrum is changed more dramatically. The wave-number spectrum 
then asymptotes to a constant level proportional to the square of mean-stream 
Mach number, and that level is maintained up to a wave-number k,,, of the order 
of MIS*. In  that regime compressible-flow effects are dominant in setting the 
form of the spectrum. 
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3. The response of a large homogeneous plate to boundary-layer noise 
The response of a large panel is governed by the equation of panel motion 

- m  -++-+-V4y = p .  (2 z : ] 
m is written for the mass of the panel per unit surface area, y is the panel dis- 
placement in a direction taking the panel into the turbulent flow, pis a mechanical 
damping coefficient and B is the bending stiffness. p is written for the total 
applied stress, incorporating not only the turbulent pressure field acting on one 
side of a rigid panel, but also the fluid loading due to panel response, known to be 
additive to the rigid-surface stress whenever the vibration is of low amplitude, 
provided, of course, the turbulent motion is unaffected by that of the panel. 

The response equation can be expressed in terms of the generalized Fourier 
transform of the vibration velocity U(k, w )  and of the pressure exerted on a rigid 
surface Prigid(k, w ) ,  when one incorporates into the pressure field the fluidloading. 
The transform of the applied stress P(k ,o)  can be related to Prigid(k7o)and 
U(k, W )  by a relation essentially expressing the superposition of pressures due to 
motion over a rigid surface and those due to surface response at low amplitude 

a is either one or two, depending on whether only one side of the panel or both are 
exposed to the vibratory fluid loading. 

The response power spectrum is derived by Fourier transforming equation 
(3.0) and multiplying the result by its complex conjugate. Use of equation (3.1) 
allows the spectra to  be related through an equation which has two characteristic 
regimes depending on whether kaolw is less or greater than unity. The first is the 
high-frequency regime where compressibility effects are important, and the vibra- 
tion is able to lose energy to a vibration-excited sound field. The fluid loading then 
appears as an additional damping term in the equation relating the power spectra 
of response velocity U*(k,w) to that of the pressure field operative on a rigid 
surface P&(k, w ) .  The equation is essentially that given by Corcos & Liepmann 
(1955) in their account of noise transmission through structures excited by a 
turbulent boundary layer when [ w ]  > a,lkl, 

kp is the wave-number of free flexural waves and 7 is the mechanical loss factor. 
7 is related to + by the relation 

WP = q(B/m) Ic4. (3.3) 

At lower frequencies the panel is unable to communicate its vibrational 
energy to the sound field, so that the fluid loading changes its character and 
becomes non-dissipative. The spectral equation is then of a different form 
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Evidently, in the regime where incompressible arguments are largely valid, 
the fluid loading induced by vibration merely lowers the free-wave wave-number. 
The fluid loading remains, but is of a type completely unaffected by compressi- 
bility. That limit can be written down very simply, so that the low-frequency 
equation describing the response of a large homogeneous panel excited by 
boundary-layer turbulence is 

The mechanical damping 9 ,  plays an essential part in controlling the resonant 
response. In  this regime equation (2.15) provides the basis for estimating the 
forcing spectrum which would display features illustrated in figure 2 ( 6 ) .  There 
would be no forcing field at low wave number and consequently there would be 
no response. 

A t  higher frequencies equation (3.2) provides the proper description of re- 
sponse, asymptoting at sufficiently high frequency to the simpler form 

The fluid loading here is strongly Mach-number dependent and is essentially 
unrelated to that of the incompressible-flow example, appearing only as an energy 
sink where the vibrational energy can be disposed of in an acoustic field. The most 
intense vibration will occur at the free-wave, or resonant, condition, where k = kp. 
That is clearly the situation of most practical interest. kp is related to the 
frequency w through the bending stiffness, or more simply through the wave 
velocity cp 

so that the free-wave response in the compressible-flow rbgime, which is the case 
for all free waves with supersonic phase velocities, is governed by the relatively 
simple equation relating the resonant response spectrum to that of the boundary- 
layer-pressure fluctuations induced on a rigid surface 

w = k; (B/m)h = kpcp, (3.7) 

w$a,lkl or cp $ao .  
In this regime the forcing pressure field is described by equation (2.11) so that 
the spectrum will be of the type sketched in figure 2 (a) ,  with a level proportional 
to the square of frequency near the frequency origin. The response spectrum will 
consequently be constant at low enough frequency. The level in this rhgime is 
that important in determining sound radiation and transmission by structural 
vibration, and is seen to be entirely dependent on effects directly attributable 
to the compressibility of the fluid. This is so for both the boundary-layer induced 
pressures and response, and represents a severe restriction of the usefulness of 
incompressible-flow arguments in the flow-noise problem. 

We conclude with a comment on the rhgimes where the idealized large-plate 
example is likely to be of practical significance. The first section, dealing with 
the pressure field exerted on a rigid boundary by turbulent flow a t  finite Mach 
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number, is likely to be relevant whenever the boundary layer is homogeneous 
in planes parallel to the surface, over lengths significantly larger than the acoustic 
wave-lengths of interest. However, the incompressible-flow models, in the 
frequency regimes where they are relevant, are likely to be valid whenever the 
flow is homogeneous over a length large compared with the boundary-layer 
thickness, a considerably less stringent dimensional requirement. In  this second 
section, concerned more with the structural response, there are again two restric- 
tions on surface dimensions. In  the first place, for the structural dynamics to be 
similar to those of the infinite panel, the panel dimension must be large in com- 
parison to the wave-lengths of free waves, and the dissipation must be high 
enough to inhibit modal response. In  the second place, in order that the acoustic 
loading is that of the infinite plate, a panel must exceed by a large factor the 
acoustic wave-lengths of interest. The example is thus of restricted practical 
utility a t  low Mach number, but as Mach number and frequencies are increased 
the example must become more relevant. However, even a t  the lowest of Mach 
numbers, one point that has attracted considerable attention is clarified. That 
concerns the instantaneous force applied to a large plane surface by boundary- 
layer flow. It has been demonstrated here that the incompressible-flow argu- 
ments that predicted the force to vanish give only the limit of the more general 
result, that the force is proportional to the square of mean-flow Mach number. 

This work has been conducted at Bolt, Beranek and Newman Inc. under the 
fundamental hydromechanics research programme of the Bureau of Ships 
administered by the David Taylor Model Basin. That support is gratefully 
acknowledged, as is the technical support provided by Drs G. Maidanik, E. M. 
Kerwin and R. H. Lyon. 
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